Ch. 16 - Energy Essential Questions

- What is Energy?
- What are the 7 different forms of energy?
- What are Kinetic Energy & Potential Energy?
- How do KE and PE convert into one another?
- How do the forms of energy convert into one another?
- What is the law of the Conservation of Energy?
- How is energy related to the Physics subjects that we've studied already?

Section 1 - Forms or

Energy

THERMAL (heat)

internal motion of particles

Measured in joules (J)

Def. The ability to do work.

SOUND

Sound waves transfer energy

ENERGY

MECHANICAL

motion of objects

NUCLEAR

changes in the nucleus by splitting or fusing

CHEMICAL

bonding of atoms or ions

ELECTROMAGNETIC

motion of electric charges

LIGHT

Part of electromagnetic energy, but radiation from the sun is in this category

Section 2 – Kinetic & Potential Energy

- Kinetic Energy (KE)
 - energy in the form of motion
 - depends on mass and velocity

Which has the most KE?
 80 km/h truck

Which has the least KE?50 km/h motorcycle

Formula for Kinetic Energy

Kinetic Energy

$$KE = \max x \ velocity^{2}$$

Kinetic Energy Problem

• An object has 2 kg of mass and a velocity of 2.5 m/s. How much kinetic energy does it contain?

GIVEN:	WORK:
m = 2 kg	$KE = m \times v^2$
V = 2.5 m/s	2
KE = ?	$KE = 2 kg x (2.5 m/s)^{2}$
	2
	KE = 6.25 J

Kinetic Energy Analysis

Complete the following table.

Which has the greater effect on the KE of an object – mass or velocity? WHY?????

Object	Mass (kg)	Velocity (m/sec)	KE (J)
Α	1	1	
В	2	1	
С	1	2	
D	2	2	

Section 2 – Kinetic & Potential Energy

- Potential Energy (PE)
 - stored energy
 - depends on position (gravitational) or configuration (shape) of an object
- Which boulder has greater gravitational PE?
- What other ways can an object store energy?

Examples of Potential Energy

The compressed springs of a dart gun store elastic potential energy. When the trigger is pulled, the springs apply a force to do work on the dart.

Gravitational Potential Energy Examples

The massive ball of a demolition machine and the stretched bow possesses stored energy of position - potential energy.

Potential Energy due to shape/configuration examples

Formula for <u>Gravitational</u> Potential Energy

Gravitational Potential Energy (GPE)

$$SPE = weight x height$$

Potential Energy Problem

A person with a mass of 60 kg climbs up a 3

	meter diving	board. How much potential
GIVE		WORK:
m = 6	60 kg	$W = m \times g$
L _ 0		\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

$$h = 3 \text{ m}$$
 $W = 60 \text{ kg x } 9.8 \text{ m/s}^2$

What do we need to do
$$GPE = Wxh$$

FIRST?????

GPE = Wxh

GPE = 588 N x 3 m

GPE = 1,764 J

Section 3 – Energy Conversions

- **Energy Conversions**
 - Changes in the forms of energy from one to another
 - All forms of energy can be converted to other forms.
 - One of the most common changes is PE to KE and KE to PE.
 - Other examples include:
 - mechanical thermal
 - chemical thermal

Energy Conversions PE KE can continuously convert back and forth into one another.

Section 3 – PE/KE

Ex: at top of hill – max GPE, no KE At bottom of hill – max KE, no GPE

Section 3 – PE/KE Energy Conversions

Label where KE of the marble is greatest and Zero.

Label where PE of the marble is greatest and Zero.

Section 3 – PE/KE Energy Conversions

Section 3 – 7 Forms of Energy Conversions

Section 3 – 7 Forms of Energy Conversions

 Let's trace the path of energy conversions on Page 406 of the text.

Section 4 - Conservation of Energy

- Law of Conservation of Energy
 - Energy may change forms, but it can neither be created nor destroyed by ordinary means (ways).
 - Energy just changes form from one to another.
 - Einstein discovered that mass can be converted into pure energy and vice-versa.

Section 4 - Conservation of Energy

Formula for calculating energy

$$E = mass \times speed \ of \ light^{2}$$

$$E = mc^2$$

 Because the speed of light is such a huge number, theoretically, even a small mass may yield a tremendous amount of energy

Section 4 - Conservation of Energy

• How do we work with a number in scientific notation that is being squared?

The formula is $E = mc^2$

This means $E = mass x (3 x 10^8)^2$

The ² on the outside of the parentheses is distributed to everything within the parentheses!

This becomes E = mass x (9 x 10¹⁶ m²/s²)

Every time you use this formula!!!!!

Conservation of Energy Problem

How much energy is found in a 5 kg pile of doggie poo poo?

GIVEN:	WORK:
$c = 3 \times 10^8 \text{ m/s}$	$E = mc^2$
m = 5 kg	$E = (5 \text{ kg}) \times (3 \times 10^8 \text{ m/s})^2$
E = ?	$E = (5 \text{ kg}) \times (9 \times 10^{16} \text{ m}^{2/\text{s}^2})$
	$E = 45 \times 10^{16} J$
	or
	$4.5 \times 10^{17} J$