Name \qquad

Per \qquad

PLANET EARTH \& EARTH'S SHAPE

A. Model - a representation of an object or an idea

1. There are 5 different types of models used in Earth Science:
a) Physical model - a globe, model car/plane, Barbie
b) Mechanical model - it has moving parts - a planetarium
c) Mental model - a picture in your mind
d) Mathematical model - a formula
e) Graphic model - a graph/grid
B. Earth Dimensions \& Measurements - Topics 1\&2 pp. 17-18 TQ's 1,2 p. 20

Circumference - the distance around a spherical object as measured at the surface

1. Equatorial circumference $=40076 \mathrm{Km}$.
2. Polar circumference $=40008 \mathrm{Km}$.
3. Clearly, the Earth is not a perfect sphere
a) its true shape is an oblate spheroid - a sphere with a slight polar flattening and a bulge at the equator - caused by rotation
4. The Earth's $\%$ of error $=17 / 100$ of 1% put another way:

The Earth is 99 and $83 / 100$ \% perfectly round
C. There are 4 lines of evidence that rule out flat \& perfectly round as choices:

1. Simple observations
a) sailing ships disappear bottom up over the horizon
sailing ships appear mast first over the horizon
b) during a lunar eclipse, a curved shadow from the Earth is cast upon the surface of the Moon
2. Changing altitude of Polaris

Altitude $=$ the angle between a celestial object and the horizon
Polaris = the North Star - in the constellation of the Little Dipper/Ursa Minor
Celestial Object = any object outside of the Earth's atmosphere
a) as ships sailed north or south, the altitude changed in a regular fashion - inconsistent with a flat surface
3. Varying Gravity Measurements
a) you weigh the most at the poles - closest to Earth's center
b) you weigh the least at the equator - furthest from the Earth's center - there shouldn't be a closest or furthest
4. Photographs from Outer Space p. 18
D. Locating Positions on the Earth - Topics $2 \& 3$ pp. 111\&112 TQ's $2 \& 3$ p. 114

1. We use a co-ordinate system - any system used to locate the position of a point
a) graphs or grids as examples
2. Latitude and Longitude are the co-ordinate systems used on the surface of the earth
3. Latitude - the angular distance North or South of the Equator
a) minimum value of 0° at the Equator
b) maximum value of 90° at the Poles
c) to determine your latitude you measure the altitude of Polaris (in the Northern Hemisphere)
4. Longitude - the angular distance East or West of the Prime Meridian Prime Meridian - an imaginary line running pole to pole that passes through Greenwich, England and crosses the Equator at a right angle
a) minimum value of 0° on the Prime Meridian
b) maximum value of 180° on the International Date Line
c) longitude is based on the fact that: the Earth rotates at 15° per hour from west to east
d) to determine your longitude you use a chronometer - a device that tells time on the Prime Meridian and your local solar time
1) for every hour in time difference there are 15° of difference in longitude
2) if your local solar time is earlier than time on the Prime Meridian, you're in the Western Hemisphere
3) if your local solar time is later than time on the Prime Meridian, you're in the Eastern Hemisphere
5. Facts about latitude and longitude
a) both are based on celestial measurements - latitude is based on Polaris, longitude on time which is a function of the Sun's position in the sky
b) degrees of latitude and longitude are divided into 60 equal parts called minutes
c) an imaginary line connecting points of equal latitude is called a parallel - all are different lengths and none touch
d) an imaginary line connecting points of equal longitude is called a meridian - all are the same length and all intersect at the poles
E. Major sub-divisions of the Earth
6. Lithosphere - the continuos layer of rock that forms the solid outer shell of the Earth
a) it includes the crust and the uppermost mantle known as the asthenosphere
b) it's up to 100 Km . thick in spots
c) it's usually covered by a layer of loose soil and rocks
7. Hydrosphere - the thin layer of water that rests on the lithosphere
a) it covers about 71\% of the Earth's surface
b) it varies in thickness up to about 10 Km .
c) drawn to scale, it's almost invisible on the surface of Earth
8. Atmosphere - the thin shell of gases that surrounds the Earth
a) it's sub-divided into various "spheres" - see ESRT
b) the lowermost sphere - the troposphere - is the most important - 0 to 12 Km . above the surface
1) it contains all the gases needed to support life -
78% nitrogen, 21% oxygen, 1% all others
2) it contains most of the mass of the atmosphere
3) it's where weather occurs
4) it contains virtually all of the water vapor of the
4. Biosphere - the community of plants and animals on the Earth
a) it aids in weathering of the surface
b) it contributes to the formation of soils
F. Fields - any portion of the environment that has a measurable value at every point
5. There are two types of fields, scalar fields and vector fields
6. Scalar field - a field which requires only a magnitude (strength or number) to express itself
a) temperature b) relative humidity c) air pressure
d) population e) elevation
7. Vector field - a field which requires both a magnitude and a direction to express itself NOTE : direction includes points of the compass as well as up and down
a) wind
b) gravity c) magnetism
d) latitude e) longitude
f) velocity g) ocean currents
8. Facts about fields
a. all fields change with the passage of time
b. fields are commonly expressed by the use of isolines a line connecting points of equal value
c. common isolines include:
1) parallels - latitude
2) meridians - longitude
3) isotherms - temperature
4) isobars - air pressure
5) contour lines - elevation
G. Topographic/Contour Maps - a map used to show elevations, landforms, and cultural features of the Earth's surface
1. satellites do modern map data gathering -Topics 14,15,16 pp. 121-123
2. Things found on a topographic map:
3. Latitude - in degrees and minutes on the right hand side of the map
a) a minute is $1 / 60^{\text {th }}$ of 1 degree
b) if the numbers increase towards the top of the map, it's from the northern hemisphere
4. Longitude - in degrees and minutes running along the top and bottom of the map
a) if the numbers increase towards the left hand side of the map, it's from the western hemisphere
5. Scales - used to determine distances on the map - Topic 5 pp. 112-113 TQ 5ab p. 114
a) a bar scale is usually used - on the bottom of the map
b) mathematical scale - a ratio of map distance to real world distance - 1:63360 for example
6. Magnetic Declination - the difference between true north
(geographic north) and magnetic north - Topic 10 p. 118 p. 1187.11
a) expressed in degrees
b) used to calibrate a compass
7. Contour Lines - isolines that connect points of equal elevation

Topic 6 p. 115 TQ 6abc p. 117
a) every $5^{\text {th }}$ one is darkened and has its value printed on it
b) every point on the line has the same elevation as every other point
c) the ocean has an elevation of 0 - where the ocean meets the beach is the equivalent of a 0 foot contour line
8. Contour Interval - the vertical difference between adjacent contour lines - it tells you what to count by
a) it's always a power of 5
b) it's usually printed on the bottom of the map
c) it can be determined by dividing the number of "gaps" into the vertical difference between listed contour lines
9. Gradient (slope) - change in field value (elevation) divided by change in distance - ESRT - Topic 12 p. 119 TQ 12 p. 120
a) as the distance between contour lines increases, gradient decreases
b) the closer the lines, the steeper the slope
10. Stream Gradient - a measure of how far a stream drops vertically over a specific horizontal distance
a) use the formula in ESRT
11. Rule of Contour "V's" - Topic 11 pp. 118-119 TQ 11a-f p. 120
a) whenever a contour line crosses a stream or river, it takes on a V-shape and the V always points uphill/upstream
b) it's used to tell which way a stream is flowing
12. Compass Direction
a) North at the top, South at the bottom, East to the right, West to the left
13. Hatchured Contour Line - a Depression Contour - a special contour line used to show a closed depression - Topic 7 p. 116 TQ 7
a) quarries, swamps, volcanic cones, craters, and sinkholes are examples of closed depressions p. 128 \& 162
b) if you are moving uphill and encounter a hatchured contour line, you repeat the value of the last regular contour line you crossed
c) if you are moving downhill and encounter a hatchured contour line, you continue to drop by the contour interval of the map
14. Symbols/Key - self expanatory
15. Colors
a) Green $=$ vegetation b) Blue $=$ water c) White $=$ Bedrock
d) Red = roadways e) Brown = contour lines f) Black = labels and print
16. Profile - a cross-sectional view of the surface - a side view - Topic 13 p. 120 TQ 13a p. 120
17. Elevation - the vertical difference above or below sea level - Topic 8 p. 116 TQ 8ab p. 117
a) it's usually expressed as a range - higher than the lower line, and lower than the higher line
b) the range must be within one contour interval
c) exact elevation is possible if:

1) the spot sits right on a contour line
2) the spot happens to be a bench mark p. 1167.9
